Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A First Analysis of Kernels for Kriging-based Optimization in Hierarchical Search Spaces (1807.01011v1)

Published 3 Jul 2018 in cs.NE and stat.ML

Abstract: Many real-world optimization problems require significant resources for objective function evaluations. This is a challenge to evolutionary algorithms, as it limits the number of available evaluations. One solution are surrogate models, which replace the expensive objective. A particular issue in this context are hierarchical variables. Hierarchical variables only influence the objective function if other variables satisfy some condition. We study how this kind of hierarchical structure can be integrated into the model based optimization framework. We discuss an existing kernel and propose alternatives. An artificial test function is used to investigate how different kernels and assumptions affect model quality and search performance.

Citations (9)

Summary

We haven't generated a summary for this paper yet.