Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adversarial Learning of Intermediate Acoustic Feature for End-to-End Lightweight Text-to-Speech

Published 5 Apr 2022 in cs.SD and eess.AS | (2204.02172v2)

Abstract: To simplify the generation process, several text-to-speech (TTS) systems implicitly learn intermediate latent representations instead of relying on predefined features (e.g., mel-spectrogram). However, their generation quality is unsatisfactory as these representations lack speech variances. In this paper, we improve TTS performance by adding \emph{prosody embeddings} to the latent representations. During training, we extract reference prosody embeddings from mel-spectrograms, and during inference, we estimate these embeddings from text using generative adversarial networks (GANs). Using GANs, we reliably estimate the prosody embeddings in a fast way, which have complex distributions due to the dynamic nature of speech. We also show that the prosody embeddings work as efficient features for learning a robust alignment between text and acoustic features. Our proposed model surpasses several publicly available models with less parameters and computational complexity in comparative experiments.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.