Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Autoregressive 3D Shape Generation via Canonical Mapping (2204.01955v1)

Published 5 Apr 2022 in cs.CV

Abstract: With the capacity of modeling long-range dependencies in sequential data, transformers have shown remarkable performances in a variety of generative tasks such as image, audio, and text generation. Yet, taming them in generating less structured and voluminous data formats such as high-resolution point clouds have seldom been explored due to ambiguous sequentialization processes and infeasible computation burden. In this paper, we aim to further exploit the power of transformers and employ them for the task of 3D point cloud generation. The key idea is to decompose point clouds of one category into semantically aligned sequences of shape compositions, via a learned canonical space. These shape compositions can then be quantized and used to learn a context-rich composition codebook for point cloud generation. Experimental results on point cloud reconstruction and unconditional generation show that our model performs favorably against state-of-the-art approaches. Furthermore, our model can be easily extended to multi-modal shape completion as an application for conditional shape generation.

Citations (35)

Summary

We haven't generated a summary for this paper yet.