A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex Recourse (2204.01269v3)
Abstract: In this paper, we have studied a decomposition method for solving a class of nonconvex two-stage stochastic programs, where both the objective and constraints of the second-stage problem are nonlinearly parameterized by the first-stage variable. Due to the failure of the Clarke regularity of the resulting nonconvex recourse function, classical decomposition approaches such as Benders decomposition and (augmented) Lagrangian-based algorithms cannot be directly generalized to solve such models. By exploring an implicitly convex-concave structure of the recourse function, we introduce a novel decomposition framework based on the so-called partial Moreau envelope. The algorithm successively generates strongly convex quadratic approximations of the recourse function based on the solutions of the second-stage convex subproblems and adds them to the first-stage master problem. Convergence under both fixed scenarios and interior samplings is established. Numerical experiments are conducted to demonstrate the effectiveness of the proposed algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.