Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intelligence at the Extreme Edge: A Survey on Reformable TinyML (2204.00827v2)

Published 2 Apr 2022 in cs.LG and eess.SP

Abstract: Tiny Machine Learning (TinyML) is an upsurging research field that proposes to democratize the use of Machine Learning and Deep Learning on highly energy-efficient frugal Microcontroller Units. Considering the general assumption that TinyML can only run inference, growing interest in the domain has led to work that makes them reformable, i.e., solutions that permit models to improve once deployed. This work presents a survey on reformable TinyML solutions with the proposal of a novel taxonomy. Here, the suitability of each hierarchical layer for reformability is discussed. Furthermore, we explore the workflow of TinyML and analyze the identified deployment schemes, available tools and the scarcely available benchmarking tools. Finally, we discuss how reformable TinyML can impact a few selected industrial areas and discuss the challenges and future directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Visal Rajapakse (1 paper)
  2. Ishan Karunanayake (5 papers)
  3. Nadeem Ahmed (10 papers)
Citations (47)