Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ASR data augmentation in low-resource settings using cross-lingual multi-speaker TTS and cross-lingual voice conversion (2204.00618v5)

Published 29 Mar 2022 in eess.AS, cs.CL, and cs.SD

Abstract: We explore cross-lingual multi-speaker speech synthesis and cross-lingual voice conversion applied to data augmentation for automatic speech recognition (ASR) systems in low/medium-resource scenarios. Through extensive experiments, we show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems using only one target-language speaker during model training. We also managed to close the gap between ASR models trained with synthesized versus human speech compared to other works that use many speakers. Finally, we show that it is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
Citations (9)

Summary

We haven't generated a summary for this paper yet.