Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Parallel Voice Conversion for ASR Augmentation (2209.06987v1)

Published 15 Sep 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Automatic speech recognition (ASR) needs to be robust to speaker differences. Voice Conversion (VC) modifies speaker characteristics of input speech. This is an attractive feature for ASR data augmentation. In this paper, we demonstrate that voice conversion can be used as a data augmentation technique to improve ASR performance, even on LibriSpeech, which contains 2,456 speakers. For ASR augmentation, it is necessary that the VC model be robust to a wide range of input speech. This motivates the use of a non-autoregressive, non-parallel VC model, and the use of a pretrained ASR encoder within the VC model. This work suggests that despite including many speakers, speaker diversity may remain a limitation to ASR quality. Finally, interrogation of our VC performance has provided useful metrics for objective evaluation of VC quality.

Citations (2)

Summary

We haven't generated a summary for this paper yet.