Papers
Topics
Authors
Recent
Search
2000 character limit reached

Spatio-Temporal Graph Convolutional Neural Networks for Physics-Aware Grid Learning Algorithms

Published 31 Mar 2022 in eess.SY and cs.SY | (2203.16732v3)

Abstract: This paper proposes a model-free Volt-VAR control (VVC) algorithm via the spatio-temporal graph ConvNet-based deep reinforcement learning (STGCN-DRL) framework, whose goal is to control smart inverters in an unbalanced distribution system. We first identify the graph shift operator (GSO) based on the power flow equations. Then, we develop a spatio-temporal graph ConvNet (STGCN), testing both recurrent graph ConvNets (RGCN) and convolutional graph ConvNets (CGCN) architectures, aimed at capturing the spatiotemporal correlation of voltage phasors. The STGCN layer performs the feature extraction task for the policy function and the value function of the reinforcement learning architecture, and then we utilize the proximal policy optimization (PPO) to search the action spaces for an optimum policy function and to approximate an optimum value function. We further utilize the low-pass property of voltage graph signal to introduce an GCN architecture for the the policy whose input is a decimated state vector, i.e. a partial observation. Case studies on the unbalanced 123-bus systems validate the excellent performance of the proposed method in mitigating instabilities and maintaining nodal voltage profiles within a desirable range.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.