Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Short-Term Voltage Stability Assessment Based on Spatial-Temporal Graph Convolutional Network (2103.03729v1)

Published 5 Mar 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Post-fault dynamics of short-term voltage stability (SVS) present spatial-temporal characteristics, but the existing data-driven methods for online SVS assessment fail to incorporate such characteristics into their models effectively. Confronted with this dilemma, this paper develops a novel spatial-temporal graph convolutional network (STGCN) to address this problem. The proposed STGCN utilizes graph convolution to integrate network topology information into the learning model to exploit spatial information. Then, it adopts one-dimensional convolution to exploit temporal information. In this way, it models the spatial-temporal characteristics of SVS with complete convolutional structures. After that, a node layer and a system layer are strategically designed in the STGCN for SVS assessment. The proposed STGCN incorporates the characteristics of SVS into the data-driven classification model. It can result in higher assessment accuracy, better robustness and adaptability than conventional methods. Besides, parameters in the system layer can provide valuable information about the influences of individual buses on SVS. Test results on the real-world Guangdong Power Grid in South China verify the effectiveness of the proposed network.

Citations (54)

Summary

We haven't generated a summary for this paper yet.