Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations (2203.16639v1)

Published 30 Mar 2022 in cs.CV, cs.AI, cs.CL, and cs.LG

Abstract: We present a meta-learning framework for learning new visual concepts quickly, from just one or a few examples, guided by multiple naturally occurring data streams: simultaneously looking at images, reading sentences that describe the objects in the scene, and interpreting supplemental sentences that relate the novel concept with other concepts. The learned concepts support downstream applications, such as answering questions by reasoning about unseen images. Our model, namely FALCON, represents individual visual concepts, such as colors and shapes, as axis-aligned boxes in a high-dimensional space (the "box embedding space"). Given an input image and its paired sentence, our model first resolves the referential expression in the sentence and associates the novel concept with particular objects in the scene. Next, our model interprets supplemental sentences to relate the novel concept with other known concepts, such as "X has property Y" or "X is a kind of Y". Finally, it infers an optimal box embedding for the novel concept that jointly 1) maximizes the likelihood of the observed instances in the image, and 2) satisfies the relationships between the novel concepts and the known ones. We demonstrate the effectiveness of our model on both synthetic and real-world datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lingjie Mei (3 papers)
  2. Jiayuan Mao (55 papers)
  3. Ziqi Wang (93 papers)
  4. Chuang Gan (195 papers)
  5. Joshua B. Tenenbaum (257 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.