Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SegDiscover: Visual Concept Discovery via Unsupervised Semantic Segmentation (2204.10926v1)

Published 22 Apr 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Visual concept discovery has long been deemed important to improve interpretability of neural networks, because a bank of semantically meaningful concepts would provide us with a starting point for building machine learning models that exhibit intelligible reasoning process. Previous methods have disadvantages: either they rely on labelled support sets that incorporate human biases for objects that are "useful," or they fail to identify multiple concepts that occur within a single image. We reframe the concept discovery task as an unsupervised semantic segmentation problem, and present SegDiscover, a novel framework that discovers semantically meaningful visual concepts from imagery datasets with complex scenes without supervision. Our method contains three important pieces: generating concept primitives from raw images, discovering concepts by clustering in the latent space of a self-supervised pretrained encoder, and concept refinement via neural network smoothing. Experimental results provide evidence that our method can discover multiple concepts within a single image and outperforms state-of-the-art unsupervised methods on complex datasets such as Cityscapes and COCO-Stuff. Our method can be further used as a neural network explanation tool by comparing results obtained by different encoders.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Haiyang Huang (16 papers)
  2. Zhi Chen (235 papers)
  3. Cynthia Rudin (135 papers)
Citations (12)

Summary

We haven't generated a summary for this paper yet.