Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-Driven Model Predictive Control for Linear Time-Periodic Systems (2203.16423v4)

Published 30 Mar 2022 in eess.SY and cs.SY

Abstract: We consider the problem of data-driven predictive control for an unknown discrete-time linear time-periodic (LTP) system of known period. Our proposed strategy generalizes both Data-enabled Predictive Control (DeePC) and Subspace Predictive Control (SPC), which are established data-driven control techniques for linear time-invariant (LTI) systems. The approach is supported by an extensive theoretical development of behavioral systems theory for LTP systems, culminating in a generalization of the fundamental lemma. Our algorithm produces results identical to standard Model Predictive Control (MPC) for deterministic LTP systems. Robustness of the algorithm to noisy data is illustrated via simulation of a regularized version of the algorithm applied to a stochastic multi-input multi-output LTP system.

Citations (2)

Summary

We haven't generated a summary for this paper yet.