Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Infrared Finite Scattering Theory in Quantum Field Theory and Quantum Gravity (2203.14334v3)

Published 27 Mar 2022 in hep-th, gr-qc, math-ph, and math.MP

Abstract: Infrared (IR) divergences arise in scattering theory with massless fields and are manifestations of the memory effect. There is nothing singular about states with memory, but they do not lie in the standard Fock space. IR divergences are artifacts of trying to represent states with memory in the standard Fock space. For collider physics, one can impose an IR cutoff and calculate inclusive quantities. But, this approach cannot treat memory as a quantum observable and is highly unsatisfactory if one views the S-matrix as fundamental in QFT and quantum gravity, since the S-matrix is undefined. For a well-defined S-matrix, it is necessary to define in/out Hilbert spaces with memory. Such a construction was given by Faddeev and Kulish (FK) for QED. Their construction "dresses" momentum states of the charged particles by pairing them with memory states of the electromagnetic field to produce states of vanishing large gauge charges at spatial infinity. However, in massless QED, due to collinear divergences, the "dressing" has an infinite energy flux so these states are unphysical. In Yang-Mills theory the "soft particles" used for dressing also contribute to the current flux, invalidating the FK procedure. In quantum gravity, the analogous FK construction would attempt to produce a Hilbert space of eigenstates of supertranslation charges at spatial infinity. However, we prove that there are no eigenstates of supertranslation charges except the vacuum. Thus, the FK construction fails in quantum gravity. We investigate some alternatives to FK constructions but find that these also do not work. We believe that to treat scattering at a fundamental level in quantum gravity - as well as in massless QED and YM theory - it is necessary to take an algebraic viewpoint rather than shoehorn the in/out states into some fixed Hilbert space. We outline the framework of such an IR finite scattering theory.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com