Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster Algebras: Network Science and Machine Learning (2203.13847v2)

Published 25 Mar 2022 in math.CO, cs.LG, hep-th, and math.AG

Abstract: Cluster algebras have recently become an important player in mathematics and physics. In this work, we investigate them through the lens of modern data science, specifically with techniques from network science and machine learning. Network analysis methods are applied to the exchange graphs for cluster algebras of varying mutation types. The analysis indicates that when the graphs are represented without identifying by permutation equivalence between clusters an elegant symmetry emerges in the quiver exchange graph embedding. The ratio between number of seeds and number of quivers associated to this symmetry is computed for finite Dynkin type algebras up to rank 5, and conjectured for higher ranks. Simple machine learning techniques successfully learn to classify cluster algebras using the data of seeds. The learning performance exceeds 0.9 accuracies between algebras of the same mutation type and between types, as well as relative to artificially generated data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (77)
  1. S. Fomin and A. Zelevinsky, “Cluster algebras I: Foundations,” Journal of the American Mathematical Society 15 no. 2, (2002) 497–529. http://www.jstor.org/stable/827129.
  2. S. Fomin and A. Zelevinsky, “Cluster algebras II: Finite type classification,” Inventiones mathematicae 154 (01, 2003) 63–121.
  3. L. Williams, “Cluster algebras: an introduction,” Bulletin of the American Mathematical Society 51 no. 1, (2014) 1–26.
  4. R. Marsh, Lecture Notes on Cluster Algebras. Zurich lectures in advanced mathematics. European Mathematical Society, 2013. https://books.google.co.uk/books?id=ZmsdMj958ZcC.
  5. M.-W. Cheung, E. Kelley, and G. Musiker, “Cluster scattering diagrams and theta basis for reciprocal generalized cluster algebras,” Séminaire Lotharingien Combinatoire: FPSAC 21 (2021) .
  6. B. Duan, J.-R. Li, and Y.-F. Luo, “Quiver mutations and boolean reflection monoids,” Journal of Algebra 544 (2020) 417–453. https://www.sciencedirect.com/science/article/pii/S002186931930554X.
  7. N. Seiberg, “Electric-magnetic duality in supersymmetric non-abelian gauge theories,” Nuclear Physics B 435 no. 1-2, (Feb, 1995) 129–146. http://dx.doi.org/10.1016/0550-3213(94)00023-8.
  8. B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seiberg duality and brane diamonds,” JHEP 12 (2001) 035, arXiv:hep-th/0109063.
  9. A. P. Fordy and R. J. Marsh, “Cluster mutation-periodic quivers and associated Laurent sequences,” J. Algebr. Comb. 34 (2011) 19–66, arXiv:0904.0200 [math.CO].
  10. F. Benini, D. S. Park, and P. Zhao, “Cluster Algebras from Dualities of 2d 𝒩𝒩{\mathcal{N}}caligraphic_N = (2, 2) Quiver Gauge Theories,” Commun. Math. Phys. 340 (2015) 47–104, arXiv:1406.2699 [hep-th].
  11. S. Franco, D. Galloni, and A. Mariotti, “Bipartite Field Theories, Cluster Algebras and the Grassmannian,” J. Phys. A 47 no. 47, (2014) 474004, arXiv:1404.3752 [hep-th].
  12. S. Franco, A. Hanany, Y.-H. He, and P. Kazakopoulos, “Duality walls, duality trees and fractional branes,” arXiv:hep-th/0306092.
  13. S. Franco and G. Musiker, “Higher Cluster Categories and QFT Dualities,” Phys. Rev. D 98 no. 4, (2018) 046021, arXiv:1711.01270 [hep-th].
  14. V. V. Fock and A. B. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory,” Publications Mathématiques de l’Institut des Hautes Études Scientifiques 103 (2003) 1–211.
  15. V. Fock and A. Goncharov, “The quantum dilogarithm and representations of quantum cluster varieties,” Inventiones mathematicae 175 (02, 2009) 223–286.
  16. H. Williams, “Toda Systems, Cluster Characters, and Spectral Networks,” Commun. Math. Phys. 348 no. 1, (2016) 145–184, arXiv:1411.3692 [math.RT].
  17. D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-Crossing in Coupled 2d-4d Systems,” JHEP 12 (2012) 082, arXiv:1103.2598 [hep-th].
  18. M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas invariants and cluster transformations,” arXiv:0811.2435 [math.AG].
  19. J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu, and A. Volovich, “Motivic Amplitudes and Cluster Coordinates,” JHEP 01 (2014) 091, arXiv:1305.1617 [hep-th].
  20. J. Golden, M. F. Paulos, M. Spradlin, and A. Volovich, “Cluster polylogarithms for scattering amplitudes,” Journal of Physics A: Mathematical and Theoretical 47 no. 47, (Nov, 2014) 474005.
  21. S. He, Z. Li, and Q. Yang, “Notes on cluster algebras and some all-loop Feynman integrals,” Journal of High Energy Physics 2021 (06, 2021) .
  22. N. Arkani-Hamed and J. Trnka, “The Amplituhedron,” JHEP 10 (2014) 030, arXiv:1312.2007 [hep-th].
  23. Cambridge University Press, 4, 2016. arXiv:1212.5605 [hep-th].
  24. Y.-H. He, “Deep-Learning the Landscape,” arXiv:1706.02714 [hep-th].
  25. Y.-H. He, “Machine-learning the string landscape,” Phys. Lett. B 774 (2017) 564–568.
  26. J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson, “Machine Learning in the String Landscape,” JHEP 09 (2017) 157, arXiv:1707.00655 [hep-th].
  27. D. Krefl and R.-K. Seong, “Machine Learning of Calabi-Yau Volumes,” Phys. Rev. D 96 no. 6, (2017) 066014, arXiv:1706.03346 [hep-th].
  28. F. Ruehle, “Evolving neural networks with genetic algorithms to study the String Landscape,” JHEP 08 (2017) 038, arXiv:1706.07024 [hep-th].
  29. K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Machine Learning CICY Threefolds,” Phys. Lett. B 785 (2018) 65–72, arXiv:1806.03121 [hep-th].
  30. Y.-H. He and A. Lukas, “Machine Learning Calabi-Yau Four-folds,” Phys. Lett. B 815 (2021) 136139, arXiv:2009.02544 [hep-th].
  31. V. Jejjala, D. K. Mayorga Pena, and C. Mishra, “Neural Network Approximations for Calabi-Yau Metrics,” arXiv:2012.15821 [hep-th].
  32. L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram, and F. Ruehle, “Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,” JHEP 05 (2021) 013, arXiv:2012.04656 [hep-th].
  33. A. Ashmore, R. Deen, Y.-H. He, and B. A. Ovrut, “Machine learning line bundle connections,” 2021.
  34. A. Cole, S. Krippendorf, A. Schachner, and G. Shiu, “Probing the Structure of String Theory Vacua with Genetic Algorithms and Reinforcement Learning,” in 35th Conference on Neural Information Processing Systems. 11, 2021. arXiv:2111.11466 [hep-th].
  35. X. Gao and H. Zou, “Machine learning to the orientifold Calabi-Yau with string vacua,” 2021.
  36. P. Berglund, B. Campbell, and V. Jejjala, “Machine Learning Kreuzer-Skarke Calabi-Yau Threefolds,” arXiv:2112.09117 [hep-th].
  37. D. S. Berman, Y.-H. He, and E. Hirst, “Machine learning Calabi-Yau hypersurfaces,” Phys. Rev. D 105 no. 6, (2022) 066002, arXiv:2112.06350 [hep-th].
  38. Lecture Notes in Mathematics. 5, 2021. arXiv:1812.02893 [hep-th].
  39. S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “String Model Building, Reinforcement Learning and Genetic Algorithms,” in Nankai Symposium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 11, 2021. arXiv:2111.07333 [hep-th].
  40. V. Jejjala, W. Taylor, and A. Turner, “Identifying equivalent Calabi–Yau topologies: A discrete challenge from math and physics for machine learning,” in Nankai Symposium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 2, 2022. arXiv:2202.07590 [hep-th].
  41. S. Krippendorf and M. Syvaeri, “Detecting Symmetries with Neural Networks,” arXiv:2003.13679 [physics.comp-ph].
  42. J. Halverson, “Building Quantum Field Theories Out of Neurons,” arXiv:2112.04527 [hep-th].
  43. J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Hilbert series, machine learning, and applications to physics,” Phys. Lett. B 827 (2022) 136966, arXiv:2103.13436 [hep-th].
  44. J. Bao, Y.-H. He, and E. Hirst, “Neurons on Amoebae,” J. Symb. Comput. 116 (2022) 1–38, arXiv:2106.03695 [math.AG].
  45. G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, and D. Rodriguez-Gomez, “Brain webs for brane webs,” Phys. Lett. B 833 (2022) 137376, arXiv:2202.05845 [hep-th].
  46. E. Hirst, “Machine Learning for Hilbert Series,” in Nankai Symposium on Mathematical Dialogues: In celebration of S.S.Chern’s 110th anniversary. 3, 2022. arXiv:2203.06073 [hep-th].
  47. V. Jejjala, A. Kar, and O. Parrikar, “Deep Learning the Hyperbolic Volume of a Knot,” Phys. Lett. B 799 (2019) 135033, arXiv:1902.05547 [hep-th].
  48. S. Gukov, J. Halverson, F. Ruehle, and P. Sułkowski, “Learning to Unknot,” Mach. Learn. Sci. Tech. 2 no. 2, (2021) 025035, arXiv:2010.16263 [math.GT].
  49. Y.-H. He and S.-T. Yau, “Graph Laplacians, Riemannian Manifolds and their Machine-Learning,” arXiv:2006.16619 [math.CO].
  50. Y.-H. He, E. Hirst, and T. Peterken, “Machine-learning dessins d’enfants: explorations via modular and Seiberg–Witten curves,” J. Phys. A 54 no. 7, (2021) 075401, arXiv:2004.05218 [hep-th].
  51. Y.-H. He, “Machine-Learning Mathematical Structures,” arXiv:2101.06317 [cs.LG].
  52. J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Polytopes and Machine Learning,” arXiv:2109.09602 [math.CO].
  53. A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhász, et al., “Advancing mathematics by guiding human intuition with AI,” Nature 600 no. 7887, (2021) 70–74.
  54. K. Heal, A. Kulkarni, and E. Sertöz, “Deep learning gauss–manin connections,” Advances in Applied Clifford Algebras 32 (04, 2022) .
  55. I. Bena, J. Blåbäck, M. Graña, and S. Lüst, “Algorithmically Solving the Tadpole Problem,” Adv. Appl. Clifford Algebras 32 no. 1, (2022) 7, arXiv:2103.03250 [hep-th].
  56. Y.-H. He and M. Kim, “Learning Algebraic Structures: Preliminary Investigations,” arXiv:1905.02263 [cs.LG].
  57. L. Amorós, O. Gasanova, and L. Jakobsson, “A machine learning approach to commutative algebra: Distinguishing table vs non-table ideals,” arXiv:2109.11417 [math.AC].
  58. D. Peifer, M. Stillman, and D. Halpern-Leistner, “Learning selection strategies in Buchberger’s algorithm,” Proceedings of the 37th International Conference on Machine Learning 119 . https://par.nsf.gov/biblio/10276457.
  59. J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, and Y. Xiao, “Quiver Mutations, Seiberg Duality and Machine Learning,” Phys. Rev. D 102 no. 8, (2020) 086013, arXiv:2006.10783 [hep-th].
  60. M. R. Douglas and G. W. Moore, “D-branes, quivers, and ALE instantons,” arXiv:hep-th/9603167.
  61. J. Bao, A. Hanany, Y.-H. He, and E. Hirst, “Some Open Questions in Quiver Gauge Theory,” arXiv:2108.05167 [hep-th].
  62. B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seiberg duality and brane diamonds,” Journal of High Energy Physics 2001 no. 12, (Dec, 2001) 035–035. http://dx.doi.org/10.1088/1126-6708/2001/12/035.
  63. S. Franco, A. Hanany, and Y.-H. He, “A trio of dualities: walls, trees and cascades,” Fortschritte der Physik 52 no. 67, (Jun, 2004) 540–547. http://dx.doi.org/10.1002/prop.200310142.
  64. M. Alim, S. Cecotti, C. Córdova, S. Espahbodi, A. Rastogi, and C. Vafa, “BPS quivers and spectra of complete N=2𝑁2{N}=2italic_N = 2 quantum field theories,” Comm. Math. Phys. 323 no. 3, (2013) 1185–1227. https://doi-org.ezp2.lib.umn.edu/10.1007/s00220-013-1789-8.
  65. P. Gabriel, “Unzerlegbare Darstellungen. I” Manuscripta Math. 6 (1972) 71–103; correction, ibid. 6 (1972), 309. https://doi-org.ezp2.lib.umn.edu/10.1007/BF01298413.
  66. A. Felikson, M. Shapiro, and P. Tumarkin, “Skew-symmetric cluster algebras of finite mutation type,” Journal of the European Mathematical Society (2012) 1135–1180. http://dx.doi.org/10.4171/jems/329.
  67. H. Derksen and T. Owen, “New graphs of finite mutation type,” Electron. J. Combin. 15 no. 1, (2008) Research Paper 139, 15. http://www.combinatorics.org/Volume_15/Abstracts/v15i1r139.html.
  68. A. Felikson, M. Shapiro, and P. Tumarkin, “Cluster algebras of finite mutation type via unfoldings,” International Mathematics Research Notices 2012 (06, 2010) .
  69. W. Stein et al., Sage Mathematics Software (Version 9.4.0). The Sage Development Team, 2021. http://www.sagemath.org.
  70. G. Musiker and C. Stump, “A compendium on the cluster algebra and quiver package in sage,” 2011.
  71. A. A. Hagberg, D. A. Schult, and P. Swart, “Exploring network structure, dynamics, and function using networkx,” 2008.
  72. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research 12 (2011) 2825–2830.
  73. S. Fomin and A. Zelevinsky, “Y-systems and generalized associahedra,” Annals of Mathematics 158 no. 3, (2003) 977–1018.
  74. S. Fomin and N. Reading, “Root systems and generalized associahedra,” 2008.
  75. P.-P. Dechant, “From the Trinity (A3subscript𝐴3A_{3}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, B3subscript𝐵3B_{3}italic_B start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT, H3subscript𝐻3H_{3}italic_H start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT) to an ADE correspondence,” Proceedings of the Royal Society A 474 no. 2220, (2018) 20180034.
  76. T. Nakanishi, “Cluster algebras and scattering diagrams, part i. basics in cluster algebras,” arXiv:2201.11371 [math.CO].
  77. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.
Citations (11)

Summary

We haven't generated a summary for this paper yet.