Weyl-Einstein structures on conformal solvmanifolds (2203.13642v1)
Abstract: A conformal Lie group is a conformal manifold $(M,c)$ such that $M$ has a Lie group structure and $c$ is the conformal structure defined by a left-invariant metric $g$ on $M$. We study Weyl-Einstein structures on conformal solvable Lie groups and on their compact quotients. In the compact case, we show that every conformal solvmanifold carrying a Weyl-Einstein structure is Einstein. We also show that there are no left-invariant Weyl-Einstein structures on non-abelian nilpotent conformal Lie groups, and classify them on conformal solvable Lie groups in the almost abelian case. Furthermore, we determine the precise list (up to automorphisms) of left-invariant metrics on simply connected solvable Lie groups of dimension 3 carrying left-invariant Weyl-Einstein structures.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.