Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plagiarism Detection in the Bengali Language: A Text Similarity-Based Approach (2203.13430v3)

Published 25 Mar 2022 in cs.CL

Abstract: Plagiarism means taking another person's work and not giving any credit to them for it. Plagiarism is one of the most serious problems in academia and among researchers. Even though there are multiple tools available to detect plagiarism in a document but most of them are domain-specific and designed to work in English texts, but plagiarism is not limited to a single language only. Bengali is the most widely spoken language of Bangladesh and the second most spoken language in India with 300 million native speakers and 37 million second-language speakers. Plagiarism detection requires a large corpus for comparison. Bengali Literature has a history of 1300 years. Hence most Bengali Literature books are not yet digitalized properly. As there was no such corpus present for our purpose so we have collected Bengali Literature books from the National Digital Library of India and with a comprehensive methodology extracted texts from it and constructed our corpus. Our experimental results find out average accuracy between 72.10 % - 79.89 % in text extraction using OCR. Levenshtein Distance algorithm is used for determining Plagiarism. We have built a web application for end-user and successfully tested it for Plagiarism detection in Bengali texts. In future, we aim to construct a corpus with more books for more accurate detection.

Summary

We haven't generated a summary for this paper yet.