Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plagiarism Detection on Electronic Text based Assignments using Vector Space Model (ICIAfS14) (1412.7782v1)

Published 25 Dec 2014 in cs.IR and cs.CL

Abstract: Plagiarism is known as illegal use of others' part of work or whole work as one's own in any field such as art, poetry, literature, cinema, research and other creative forms of study. Plagiarism is one of the important issues in academic and research fields and giving more concern in academic systems. The situation is even worse with the availability of ample resources on the web. This paper focuses on an effective plagiarism detection tool on identifying suitable intra-corpal plagiarism detection for text based assignments by comparing unigram, bigram, trigram of vector space model with cosine similarity measure. Manually evaluated, labelled dataset was tested using unigram, bigram and trigram vector. Even though trigram vector consumes comparatively more time, it shows better results with the labelled data. In addition, the selected trigram vector space model with cosine similarity measure is compared with tri-gram sequence matching technique with Jaccard measure. In the results, cosine similarity score shows slightly higher values than the other. Because, it focuses on giving more weight for terms that do not frequently exist in the dataset and cosine similarity measure using trigram technique is more preferable than the other. Therefore, we present our new tool and it could be used as an effective tool to evaluate text based electronic assignments and minimize the plagiarism among students.

Citations (21)

Summary

We haven't generated a summary for this paper yet.