Square function estimates for conical regions (2203.12155v2)
Abstract: We prove square function estimates for certain conical regions. Specifically, let ${\Delta_j}$ be regions of the unit sphere $\mathbb{S}{n-1}$ and let $S_j f$ be the smooth Fourier restriction of $f$ to the conical region ${\xi\in\mathbb{R}n:\xi/|\xi|\in\Delta_j}$. We are interested in the following estimate $$\Big|(\sum_j|S_jf|2){1/2}\Big|p\lesssim\epsilon \delta{-\epsilon}|f|_p.$$ The first result is: when ${\Delta_j}$ is a set of disjoint $\delta$-balls, then the estimate holds for $p=4$. The second result is: In $\mathbb{R}3$, when ${\Delta_j}$ is a set of disjoint $\delta\times\delta{1/2}$-rectangles contained in the band $\mathbb{S}2\cap N_\delta({\xi_12+\xi_22=\xi_32})$ and ${\rm{supp}}\widehat f\subset {\xi\in\mathbb{R}3:\xi/|\xi|\in\mathbb{S}2\cap N_\delta({\xi_12+\xi_22=\xi_32})}$, then the estimate holds for $p=8$. The two estimates are sharp.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.