Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unknown Piecewise Constant Parameters Identification with Exponential Rate of Convergence (2203.11685v2)

Published 22 Mar 2022 in eess.SY and cs.SY

Abstract: The scope of this research is the identification of unknown piecewise constant parameters of linear regression equation under the finite excitation condition. Compared to the known methods, to make the computational burden lower, only one model to identify all switching states of the regression is used in the developed procedure with the following two-fold contribution. First of all, we propose a new truly online estimation algorithm based on a well-known DREM approach to detect switching time and preserve time alertness with adjustable detection delay. Secondly, despite the fact that a switching signal function is unknown, the adaptive law is derived that provides global exponential convergence of the regression parameters to their true values in case the regressor is finitely exciting somewhere inside the time interval between two consecutive parameters switches. The robustness of the proposed identification procedure to the influence of external disturbances is analytically proved. Its effectiveness is demonstrated via numerical experiments, in which both abstract regressions and a second-order plant model are used.

Citations (11)

Summary

We haven't generated a summary for this paper yet.