Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Galerkin finite element method for nonlinear elasticity and application to reinforced concrete members (2203.11088v1)

Published 21 Mar 2022 in math.NA, cs.NA, and math.PR

Abstract: We develop a stochastic Galerkin finite element method for nonlinear elasticity and apply it to reinforced concrete members with random material properties. The strategy is based on the modified Newton-Raphson method, which consists of an incremental loading process and a linearization scheme applied at each load increment. We consider that the material properties are given by a stochastic expansion in the so-called generalized polynomial chaos (gPC) framework. We search the gPC expansion of the displacement, which is then used to update the gPC expansions of the stress, strain and internal forces. The proposed method is applied to a reinforced concrete beam with uncertain initial concrete modulus of elasticity and a shear wall with uncertain maximum compressive stress of concrete, and the results are compared to those of stochastic collocation and Monte Carlo methods. Since the systems of equations obtained in the linearization scheme using the stochastic Galerkin method are very large, and there are typically many load increments, we also studied iterative solution using preconditioned conjugate gradients. The efficiency of the proposed method is illustrated by a set of numerical experiments.

Summary

We haven't generated a summary for this paper yet.