Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Dynamics in Emergent Evolutionary Curricula (2203.10941v1)

Published 3 Mar 2022 in cs.AI, cs.LG, and cs.NE

Abstract: PINSKY is a system for open-ended learning through neuroevolution in game-based domains. It builds on the Paired Open-Ended Trailblazer (POET) system, which originally explored learning and environment generation for bipedal walkers, and adapts it to games in the General Video Game AI (GVGAI) system. Previous work showed that by co-evolving levels and neural network policies, levels could be found for which successful policies could not be created via optimization alone. Studied in the realm of Artificial Life as a potentially open-ended alternative to gradient-based fitness, minimal criteria (MC)-based selection helps foster diversity in evolutionary populations. The main question addressed by this paper is how the open-ended learning actually works, focusing in particular on the role of transfer of policies from one evolutionary branch ("species") to another. We analyze the dynamics of the system through creating phylogenetic trees, analyzing evolutionary trajectories of policies, and temporally breaking down transfers according to species type. Furthermore, we analyze the impact of the minimal criterion on generated level diversity and inter-species transfer. The most insightful finding is that inter-species transfer, while rare, is crucial to the system's success.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Aaron Dharna (3 papers)
  2. Julian Togelius (154 papers)
  3. L. B. Soros (10 papers)
  4. Amy K Hoover (1 paper)
Citations (5)