Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance-Robustness Tradeoffs in Adversarially Robust Linear-Quadratic Control (2203.10763v1)

Published 21 Mar 2022 in eess.SY and cs.SY

Abstract: While $\mathcal{H}\infty$ methods can introduce robustness against worst-case perturbations, their nominal performance under conventional stochastic disturbances is often drastically reduced. Though this fundamental tradeoff between nominal performance and robustness is known to exist, it is not well-characterized in quantitative terms. Toward addressing this issue, we borrow from the increasingly ubiquitous notion of adversarial training from machine learning to construct a class of controllers which are optimized for disturbances consisting of mixed stochastic and worst-case components. We find that this problem admits a stationary optimal controller that has a simple analytic form closely related to suboptimal $\mathcal{H}\infty$ solutions. We then provide a quantitative performance-robustness tradeoff analysis, in which system-theoretic properties such as controllability and stability explicitly manifest in an interpretable manner. This provides practitioners with general guidance for determining how much robustness to incorporate based on a priori system knowledge. We empirically validate our results by comparing the performance of our controller against standard baselines, and plotting tradeoff curves.

Citations (3)

Summary

We haven't generated a summary for this paper yet.