Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closing the Gap to Quadratic Invariance: a Regret Minimization Approach to Optimal Distributed Control (2311.02068v2)

Published 3 Nov 2023 in eess.SY and cs.SY

Abstract: In this work, we focus on the design of optimal controllers that must comply with an information structure. State-of-the-art approaches do so based on the H2 or Hinfty norm to minimize the expected or worst-case cost in the presence of stochastic or adversarial disturbances. Large-scale systems often experience a combination of stochastic and deterministic disruptions (e.g., sensor failures, environmental fluctuations) that spread across the system and are difficult to model precisely, leading to sub-optimal closed-loop behaviors. Hence, we propose improving performance for these scenarios by minimizing the regret with respect to an ideal policy that complies with less stringent sensor-information constraints. This endows our controller with the ability to approach the improved behavior of a more informed policy, which would detect and counteract heterogeneous and localized disturbances more promptly. Specifically, we derive convex relaxations of the resulting regret minimization problem that are compatible with any desired controller sparsity, while we reveal a renewed role of the Quadratic Invariance (QI) condition in designing informative benchmarks to measure regret. Last, we validate our proposed method through numerical simulations on controlling a multi-agent distributed system, comparing its performance with traditional H2 and Hinfty policies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. D. K. Molzahn, F. Dörfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and J. Lavaei, “A survey of distributed optimization and control algorithms for electric power systems,” IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 2941–2962, 2017.
  2. Y. Zheng, S. E. Li, K. Li, F. Borrelli, and J. K. Hedrick, “Distributed model predictive control for heterogeneous vehicle platoons under unidirectional topologies,” IEEE Transactions on Control Systems Technology, vol. 25, no. 3, pp. 899–910, 2016.
  3. H. S. Witsenhausen, “A counterexample in stochastic optimum control,” SIAM Journal on Control, vol. 6, no. 1, pp. 131–147, 1968.
  4. M. Rotkowitz and S. Lall, “A characterization of convex problems in decentralized control,” IEEE Transactions on Automatic Control, vol. 50, no. 12, pp. 1984–1996, 2005.
  5. L. Lessard and S. Lall, “Quadratic invariance is necessary and sufficient for convexity,” in Proceedings of the American Control Conference, pp. 5360–5362, IEEE, 2011.
  6. L. Furieri and M. Kamgarpour, “Unified approach to convex robust distributed control given arbitrary information structures,” IEEE Transactions on Automatic Control, vol. 64, no. 12, pp. 5199–5206, 2019.
  7. Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach to controller synthesis,” IEEE Transactions on Automatic Control, vol. 64, no. 10, pp. 4079–4093, 2019.
  8. L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, “On separable quadratic lyapunov functions for convex design of distributed controllers,” in 18th European control conference (ECC), pp. 42–49, IEEE, 2019.
  9. L. Furieri, Y. Zheng, A. Papachristodoulou, and M. Kamgarpour, “Sparsity invariance for convex design of distributed controllers,” IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp. 1836–1847, 2020.
  10. R. Arastoo, M. Bahavarnia, M. V. Kothare, and N. Motee, “Closed-loop feedback sparsification under parametric uncertainties,” in IEEE 55th Conference on Decision and Control (CDC), pp. 123–128, IEEE, 2016.
  11. E. Jensen and B. Bamieh, “An explicit parametrization of closed loops for spatially distributed controllers with sparsity constraints,” IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 3790–3805, 2021.
  12. S. Fattahi, G. Fazelnia, J. Lavaei, and M. Arcak, “Transformation of optimal centralized controllers into near-globally optimal static distributed controllers,” IEEE Transactions on Automatic Control, vol. 64, no. 1, pp. 66–80, 2018.
  13. SIAM, 1999.
  14. O. Sabag, G. Goel, S. Lale, and B. Hassibi, “Regret-optimal controller for the full-information problem,” in American Control Conference (ACC), pp. 4777–4782, IEEE, 2021.
  15. G. Goel and B. Hassibi, “Regret-optimal estimation and control,” IEEE Transactions on Automatic Control, vol. 68, no. 5, pp. 3041–3053, 2023.
  16. A. Martin, L. Furieri, F. Dörfler, J. Lygeros, and G. Ferrari-Trecate, “Safe control with minimal regret,” in Learning for Dynamics and Control Conference, pp. 726–738, PMLR, 2022.
  17. A. Martin, L. Furieri, F. Dörfler, J. Lygeros, and G. Ferrari-Trecate, “Regret optimal control for uncertain stochastic systems,” arXiv preprint arXiv:2304.14835, 2023.
  18. A. Didier, J. Sieber, and M. N. Zeilinger, “A system level approach to regret optimal control,” IEEE Control Systems Letters, vol. 6, pp. 2792–2797, 2022.
  19. A. Martin, L. Furieri, F. Dörfler, J. Lygeros, and G. Ferrari-Trecate, “On the guarantees of minimizing regret in receding horizon,” arXiv preprint arXiv:2306.14561, 2023.
  20. A. Martin, L. Furieri, F. Dörfler, J. Lygeros, and G. Ferrari-Trecate, “Follow the clairvoyant: an imitation learning approach to optimal control,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 2589–2594, 2023.
  21. U. Ghai, U. Madhushani, N. Leonard, and E. Hazan, “A regret minimization approach to multi-agent control,” in International Conference on Machine Learning, pp. 7422–7434, PMLR, 2022.
  22. J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,” Annual Reviews in Control, vol. 47, pp. 364–393, 2019.
  23. M. C. Rotkowitz and N. C. Martins, “On the nearest quadratically invariant information constraint,” IEEE Transactions on Automatic Control, vol. 57, no. 5, pp. 1314–1319, 2011.
  24. SIAM, 1994.
  25. J. Zhang and T. Ohtsuka, “Stochastic model predictive control using simplified affine disturbance feedback for chance-constrained systems,” IEEE Control Systems Letters, vol. 5, no. 5, pp. 1633–1638, 2021.
Citations (5)

Summary

We haven't generated a summary for this paper yet.