Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Existentially closed measure-preserving actions of free groups (2203.10178v2)

Published 18 Mar 2022 in math.LO and math.DS

Abstract: This paper is motivated by the study of probability measure-preserving (pmp) actions of free groups using continuous model theory. Such an action is treated as a metric structure that consists of the measure algebra of the probability measure space expanded by a family of its automorphisms. We prove that the existentially closed pmp actions of a given free group form an elementary class, and therefore the theory of pmp $\mathbb{F}_k$-actions has a model companion. We show this model companion is stable and has quantifier elimination. We also prove that the action of $\mathbb{F}_k$ on its profinite completion with the Haar measure is metrically generic and therefore, as we show, it is existentially closed. We deduce our main result from a more general theorem, which gives a set of sufficient conditions for the existence of a model companion for the theory of $\mathbb{F}_k$-actions on a separably categorical, stable metric structure.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.