Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What Do Adversarially trained Neural Networks Focus: A Fourier Domain-based Study (2203.08739v1)

Published 16 Mar 2022 in cs.CV and cs.LG

Abstract: Although many fields have witnessed the superior performance brought about by deep learning, the robustness of neural networks remains an open issue. Specifically, a small adversarial perturbation on the input may cause the model to produce a completely different output. Such poor robustness implies many potential hazards, especially in security-critical applications, e.g., autonomous driving and mobile robotics. This work studies what information the adversarially trained model focuses on. Empirically, we notice that the differences between the clean and adversarial data are mainly distributed in the low-frequency region. We then find that an adversarially-trained model is more robust than its naturally-trained counterpart due to the reason that the former pays more attention to learning the dominant information in low-frequency components. In addition, we consider two common ways to improve model robustness, namely, by data augmentation and by using stronger network architectures, and understand these techniques from a frequency-domain perspective. We are hopeful this work can shed light on the design of more robust neural networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.