Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Investigating Vulnerabilities of Deep Neural Policies (2108.13093v1)

Published 30 Aug 2021 in cs.LG, cs.AI, cs.CV, and stat.ML

Abstract: Reinforcement learning policies based on deep neural networks are vulnerable to imperceptible adversarial perturbations to their inputs, in much the same way as neural network image classifiers. Recent work has proposed several methods to improve the robustness of deep reinforcement learning agents to adversarial perturbations based on training in the presence of these imperceptible perturbations (i.e. adversarial training). In this paper, we study the effects of adversarial training on the neural policy learned by the agent. In particular, we follow two distinct parallel approaches to investigate the outcomes of adversarial training on deep neural policies based on worst-case distributional shift and feature sensitivity. For the first approach, we compare the Fourier spectrum of minimal perturbations computed for both adversarially trained and vanilla trained neural policies. Via experiments in the OpenAI Atari environments we show that minimal perturbations computed for adversarially trained policies are more focused on lower frequencies in the Fourier domain, indicating a higher sensitivity of these policies to low frequency perturbations. For the second approach, we propose a novel method to measure the feature sensitivities of deep neural policies and we compare these feature sensitivity differences in state-of-the-art adversarially trained deep neural policies and vanilla trained deep neural policies. We believe our results can be an initial step towards understanding the relationship between adversarial training and different notions of robustness for neural policies.

Citations (31)

Summary

We haven't generated a summary for this paper yet.