Delaunay-like Triangulation of Smooth Orientable Submanifolds by L1-Norm Minimization
Abstract: In this paper, we study the shape reconstruction problem, when the shape we wish to reconstruct is an orientable smooth d-dimensional submanifold of the Euclidean space. Assuming we have as input a simplicial complex K that approximates the submanifold (such as the Cech complex or the Rips complex), we recast the problem of reconstucting the submanifold from K as a L1-norm minimization problem in which the optimization variable is a d-chain of K. Providing that K satisfies certain reasonable conditions, we prove that the considered minimization problem has a unique solution which triangulates the submanifold and coincides with the flat Delaunay complex introduced and studied in a companion paper. Since the objective is a weighted L1-norm and the constraints are linear, the triangulation process can thus be implemented by linear programming.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.