Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Flat Delaunay Complexes for Homeomorphic Manifold Reconstruction (2203.05943v1)

Published 11 Mar 2022 in cs.CG

Abstract: Given a smooth submanifold of the Euclidean space, a finite point cloud and a scale parameter, we introduce a construction which we call the flat Delaunay complex (FDC). This is a variant of the tangential Delaunay complex (TDC) introduced by Boissonnat et al.. Building on their work, we provide a short and direct proof that when the point cloud samples sufficiently nicely the submanifold and is sufficiently safe (a notion which we define in the paper), our construction is homeomorphic to the submanifold. Because the proof works even when data points are noisy, this allows us to propose a perturbation scheme that takes as input a point cloud sufficiently nice and returns a point cloud which in addition is sufficiently safe. Equally importantly, our construction provides the framework underlying a variational formulation of the reconstruction problem which we present in a companion paper.

Citations (1)

Summary

We haven't generated a summary for this paper yet.