Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax principle for right eigenvalues of dual quaternion matrices and their generalized inverses (2203.03161v2)

Published 7 Mar 2022 in math.NA and cs.NA

Abstract: Dual quaternions can represent rigid body motion in 3D spaces, and have found wide applications in robotics, 3D motion modelling and control, and computer graphics. In this paper, we introduce three different right linear independency for a set of dual quaternion vectors, and study some related basic properties for the set of dual quaternion vectors and dual quaternion matrices. We present a minimax principle for right eigenvalues of dual quaternion Hermitian matrices. Based upon a newly established Cauchy-Schwarz inequality for dual quaternion vectors and singular value decomposition of dual quaternion matrices, we propose an important inequality for singular values of dual quaternion matrices. We finally introduce the concept of generalized inverse of dual quaternion matrices, and present the necessary and sufficient conditions for a dual quaternion matrix to be one of four types of generalized inverses of another dual quaternion matrix.

Citations (18)

Summary

We haven't generated a summary for this paper yet.