Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A global synchronization theorem for oscillators on a random graph (2203.03152v1)

Published 7 Mar 2022 in math.DS

Abstract: Consider $n$ identical Kuramoto oscillators on a random graph. Specifically, consider \ER random graphs in which any two oscillators are bidirectionally coupled with unit strength, independently and at random, with probability $0\leq p\leq 1$. We say that a network is globally synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for $p$ above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is close to the so-called connectivity threshold, namely, $p\sim \log(n)/n$ for $n \gg 1$. Ling, Xu, and Bandeira made the first progress toward proving a result in this direction: they showed that if $p\gg \log(n)/n{1/3}$, then \ER networks of Kuramoto oscillators are globally synchronizing with high probability as $n\rightarrow\infty$. Here we improve that result by showing that $p\gg \log2(n)/n$ suffices. Our estimates are explicit: for example, we can say that there is more than a $99.9996\%$ chance that a random network with $n = 106$ and $p>0.01117$ is globally synchronizing.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube