Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing Nitsche's method for variational problems (2203.02603v1)

Published 4 Mar 2022 in math.NA and cs.NA

Abstract: Nitsche's method is a well-established approach for weak enforcement of boundary conditions for partial differential equations (PDEs). It has many desirable properties, including the preservation of variational consistency and the fact that it yields symmetric, positive-definite discrete linear systems that are not overly ill-conditioned. In recent years, the method has gained in popularity in a number of areas, including isogeometric analysis, immersed methods, and contact mechanics. However, arriving at a formulation based on Nitsche's method can be a mathematically arduous process, especially for high-order PDEs. Fortunately, the derivation is conceptually straightforward in the context of variational problems. To facilitate the process, we devised an abstract framework for constructing Nitsche's method for these types of problems in [J. Benzaken, J. A. Evans, S. McCormick, and R. Tamstorf, Nitsche's method for linear Kirchhoff-Love shells: Formulation, error analysis, and verification, Comput. Methods Appl. Mech. Eng., 374 (2021), p. 113544]. The goal of this paper is to elucidate the process through a sequence of didactic examples. First, we show the derivation of Nitsche's method for Poisson's equation to gain an intuition for the various steps. Next, we present the abstract framework and then revisit the derivation for Poisson's equation to use the framework and add mathematical rigor. In the process, we extend our derivation to cover the vector-valued setting. Armed with a basic recipe, we then show how to handle a higher-order problem by considering the vector-valued biharmonic equation and the linearized Kirchhoff-Love plate. In the end, the hope is that the reader will be able to apply Nitsche's method to any problem that arises from variational principles.

Citations (5)

Summary

We haven't generated a summary for this paper yet.