Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the penalty parameter in Nitsche's method for unfitted boundary value problems (1709.05832v1)

Published 18 Sep 2017 in math.NA, cs.CE, and cs.NA

Abstract: Nitsche's method is a popular approach to implement Dirichlet-type boundary conditions in situations where a strong imposition is either inconvenient or simply not feasible. The method is widely applied in the context of unfitted finite element methods. From the classical (symmetric) Nitsche's method it is well-known that the stabilization parameter in the method has to be chosen sufficiently large to obtain unique solvability of discrete systems. In this short note we discuss an often used strategy to set the stabilization parameter and describe a possible problem that can arise from this. We show that in specific situations error bounds can deteriorate and give examples of computations where Nitsche's method yields large and even diverging discretization errors.

Citations (39)

Summary

We haven't generated a summary for this paper yet.