On symmetries of singular foliations (2203.01585v5)
Abstract: This paper shows that a weak symmetry action of a Lie algebra $\mathfrak{g}$ on a singular foliation $\mathcal F$ induces a unique up to homotopy Lie$\infty$-morphism from $\mathfrak{g}$ to the DGLA of vector fields on a universal Lie $\infty$-algebroid of $\mathcal F$. Such a Lie $\infty$-morphismwas studied by R. Mehta and M. Zambon as $L_\infty$-algebra action. We deduce from this general result several geometrical consequences. For instance, we give an example of a Lie algebra action on an affine sub-variety which cannot be extended on the ambient space. Last, we introduce the notion of bi-submersion towers over a singular foliation and lift symmetries to those.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.