Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Unsupervised Cross-Modal Hashing Method Robust to Noisy Training Image-Text Correspondences in Remote Sensing (2202.13117v1)

Published 26 Feb 2022 in cs.CV

Abstract: The development of accurate and scalable cross-modal image-text retrieval methods, where queries from one modality (e.g., text) can be matched to archive entries from another (e.g., remote sensing image) has attracted great attention in remote sensing (RS). Most of the existing methods assume that a reliable multi-modal training set with accurately matched text-image pairs is existing. However, this assumption may not always hold since the multi-modal training sets may include noisy pairs (i.e., textual descriptions/captions associated to training images can be noisy), distorting the learning process of the retrieval methods. To address this problem, we propose a novel unsupervised cross-modal hashing method robust to the noisy image-text correspondences (CHNR). CHNR consists of three modules: 1) feature extraction module, which extracts feature representations of image-text pairs; 2) noise detection module, which detects potential noisy correspondences; and 3) hashing module that generates cross-modal binary hash codes. The proposed CHNR includes two training phases: i) meta-learning phase that uses a small portion of clean (i.e., reliable) data to train the noise detection module in an adversarial fashion; and ii) the main training phase for which the trained noise detection module is used to identify noisy correspondences while the hashing module is trained on the noisy multi-modal training set. Experimental results show that the proposed CHNR outperforms state-of-the-art methods. Our code is publicly available at https://git.tu-berlin.de/rsim/chnr

Citations (3)

Summary

We haven't generated a summary for this paper yet.