Papers
Topics
Authors
Recent
2000 character limit reached

Minimax Optimal Quantization of Linear Models: Information-Theoretic Limits and Efficient Algorithms

Published 23 Feb 2022 in cs.IT, cs.LG, eess.SP, math.IT, and stat.ML | (2202.11277v2)

Abstract: High-dimensional models often have a large memory footprint and must be quantized after training before being deployed on resource-constrained edge devices for inference tasks. In this work, we develop an information-theoretic framework for the problem of quantizing a linear regressor learned from training data $(\mathbf{X}, \mathbf{y})$, for some underlying statistical relationship $\mathbf{y} = \mathbf{X}\boldsymbol{\theta} + \mathbf{v}$. The learned model, which is an estimate of the latent parameter $\boldsymbol{\theta} \in \mathbb{R}d$, is constrained to be representable using only $Bd$ bits, where $B \in (0, \infty)$ is a pre-specified budget and $d$ is the dimension. We derive an information-theoretic lower bound for the minimax risk under this setting and propose a matching upper bound using randomized embedding-based algorithms which is tight up to constant factors. The lower and upper bounds together characterize the minimum threshold bit-budget required to achieve a performance risk comparable to the unquantized setting. We also propose randomized Hadamard embeddings that are computationally efficient and are optimal up to a mild logarithmic factor of the lower bound. Our model quantization strategy can be generalized and we show its efficacy by extending the method and upper-bounds to two-layer ReLU neural networks for non-linear regression. Numerical simulations show the improved performance of our proposed scheme as well as its closeness to the lower bound.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.