Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Operations: A Survey on MLOps Tool Support (2202.10169v2)

Published 21 Feb 2022 in cs.SE

Abstract: Machine Learning (ML) has become a fast-growing, trending approach in solution development in practice. Deep Learning (DL) which is a subset of ML, learns using deep neural networks to simulate the human brain. It trains machines to learn techniques and processes individually using computer algorithms, which is also considered to be a role of AI. In this paper, we study current technical issues related to software development and delivery in organizations that work on ML projects. Therefore, the importance of the Machine Learning Operations (MLOps) concept, which can deliver appropriate solutions for such concerns, is discussed. We investigate commercially available MLOps tool support in software development. The comparison between MLOps tools analyzes the performance of each system and its use cases. Moreover, we examine the features and usability of MLOps tools to identify the most appropriate tool support for given scenarios. Finally, we recognize that there is a shortage in the availability of a fully functional MLOps platform on which processes can be automated by reducing human intervention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Nipuni Hewage (1 paper)
  2. Dulani Meedeniya (6 papers)
Citations (30)