Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling The Lowest Eigenfunction to Recover the Potential in a One-Dimensional Schrödinger Equation (2202.08191v1)

Published 16 Feb 2022 in math.SP, cs.NA, and math.NA

Abstract: We consider the BVP $-y" + qy = \lambda y$ with $y(0)=y(1)=0$. The inverse spectral problems asks one to recover $q$ from spectral information. In this paper, we present a very simple method to recover a potential by sampling one eigenfunction. The spectral asymptotics imply that for larger modes, more and more information is lost due to imprecise measurements (i.e. relative errors \textit{increases}) and so it is advantageous to use data from lower modes. Our method also allows us to recover "any" potential from \textit{one} boundary condition.

Summary

We haven't generated a summary for this paper yet.