Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An inverse problem for a semi-linear wave equation: a numerical study (2203.09427v1)

Published 17 Mar 2022 in math.AP, cs.NA, and math.NA

Abstract: We consider an inverse problem of recovering a potential associated to a semi-linear wave equation with a quadratic nonlinearity in $1 + 1$ dimensions. We develop a numerical scheme to determine the potential from a noisy Dirichlet-to-Neumann map on the lateral boundary. The scheme is based on the recent higher order linearization method [20]. We also present an approach to numerically estimating two-dimensional derivatives of noisy data via Tikhonov regularization. The methods are tested using synthetic noisy measurements of the Dirichlet-to-Neumann map. Various examples of reconstructions of the potential functions are given.

Citations (6)

Summary

We haven't generated a summary for this paper yet.