Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delving Deeper into Cross-lingual Visual Question Answering (2202.07630v2)

Published 15 Feb 2022 in cs.CL

Abstract: Visual question answering (VQA) is one of the crucial vision-and-language tasks. Yet, existing VQA research has mostly focused on the English language, due to a lack of suitable evaluation resources. Previous work on cross-lingual VQA has reported poor zero-shot transfer performance of current multilingual multimodal Transformers with large gaps to monolingual performance, without any deeper analysis. In this work, we delve deeper into the different aspects of cross-lingual VQA, aiming to understand the impact of 1) modeling methods and choices, including architecture, inductive bias, fine-tuning; 2) learning biases: including question types and modality biases in cross-lingual setups. The key results of our analysis are: 1) We show that simple modifications to the standard training setup can substantially reduce the transfer gap to monolingual English performance, yielding +10 accuracy points over existing methods. 2) We analyze cross-lingual VQA across different question types of varying complexity for different multilingual multimodal Transformers, and identify question types that are the most difficult to improve on. 3) We provide an analysis of modality biases present in training data and models, revealing why zero-shot performance gaps remain for certain question types and languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chen Liu (206 papers)
  2. Jonas Pfeiffer (34 papers)
  3. Anna Korhonen (90 papers)
  4. Ivan Vulić (130 papers)
  5. Iryna Gurevych (264 papers)
Citations (7)