Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do Lessons from Metric Learning Generalize to Image-Caption Retrieval? (2202.07474v1)

Published 14 Feb 2022 in cs.CV, cs.AI, and cs.IR

Abstract: The triplet loss with semi-hard negatives has become the de facto choice for image-caption retrieval (ICR) methods that are optimized from scratch. Recent progress in metric learning has given rise to new loss functions that outperform the triplet loss on tasks such as image retrieval and representation learning. We ask whether these findings generalize to the setting of ICR by comparing three loss functions on two ICR methods. We answer this question negatively: the triplet loss with semi-hard negative mining still outperforms newly introduced loss functions from metric learning on the ICR task. To gain a better understanding of these outcomes, we introduce an analysis method to compare loss functions by counting how many samples contribute to the gradient w.r.t. the query representation during optimization. We find that loss functions that result in lower evaluation scores on the ICR task, in general, take too many (non-informative) samples into account when computing a gradient w.r.t. the query representation, which results in sub-optimal performance. The triplet loss with semi-hard negatives is shown to outperform the other loss functions, as it only takes one (hard) negative into account when computing the gradient.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maurits Bleeker (10 papers)
  2. Maarten de Rijke (263 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.