Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unified Loss of Pair Similarity Optimization for Vision-Language Retrieval (2209.13869v2)

Published 28 Sep 2022 in cs.CV and cs.MM

Abstract: There are two popular loss functions used for vision-language retrieval, i.e., triplet loss and contrastive learning loss, both of them essentially minimize the difference between the similarities of negative pairs and positive pairs. More specifically, Triplet loss with Hard Negative mining (Triplet-HN), which is widely used in existing retrieval models to improve the discriminative ability, is easy to fall into local minima in training. On the other hand, Vision-Language Contrastive learning loss (VLC), which is widely used in the vision-language pre-training, has been shown to achieve significant performance gains on vision-language retrieval, but the performance of fine-tuning with VLC on small datasets is not satisfactory. This paper proposes a unified loss of pair similarity optimization for vision-language retrieval, providing a powerful tool for understanding existing loss functions. Our unified loss includes the hard sample mining strategy of VLC and introduces the margin used by the triplet loss for better similarity separation. It is shown that both Triplet-HN and VLC are special forms of our unified loss. Compared with the Triplet-HN, our unified loss has a fast convergence speed. Compared with the VLC, our unified loss is more discriminative and can provide better generalization in downstream fine-tuning tasks. Experiments on image-text and video-text retrieval benchmarks show that our unified loss can significantly improve the performance of the state-of-the-art retrieval models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.