Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalization Bounds via Convex Analysis (2202.04985v3)

Published 10 Feb 2022 in stat.ML and cs.LG

Abstract: Since the celebrated works of Russo and Zou (2016,2019) and Xu and Raginsky (2017), it has been well known that the generalization error of supervised learning algorithms can be bounded in terms of the mutual information between their input and the output, given that the loss of any fixed hypothesis has a subgaussian tail. In this work, we generalize this result beyond the standard choice of Shannon's mutual information to measure the dependence between the input and the output. Our main result shows that it is indeed possible to replace the mutual information by any strongly convex function of the joint input-output distribution, with the subgaussianity condition on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the dependence measure. This allows us to derive a range of generalization bounds that are either entirely new or strengthen previously known ones. Examples include bounds stated in terms of $p$-norm divergences and the Wasserstein-2 distance, which are respectively applicable for heavy-tailed loss distributions and highly smooth loss functions. Our analysis is entirely based on elementary tools from convex analysis by tracking the growth of a potential function associated with the dependence measure and the loss function.

Citations (26)

Summary

We haven't generated a summary for this paper yet.