Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

InterHT: Knowledge Graph Embeddings by Interaction between Head and Tail Entities (2202.04897v2)

Published 10 Feb 2022 in cs.CL

Abstract: Knowledge graph embedding (KGE) models learn the representation of entities and relations in knowledge graphs. Distance-based methods show promising performance on link prediction task, which predicts the result by the distance between two entity representations. However, most of these methods represent the head entity and tail entity separately, which limits the model capacity. We propose two novel distance-based methods named InterHT and InterHT+ that allow the head and tail entities to interact better and get better entity representation. Experimental results show that our proposed method achieves the best results on ogbl-wikikg2 dataset.

Citations (10)

Summary

We haven't generated a summary for this paper yet.