Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time complexity analysis of quantum difference methods for linear high dimensional and multiscale partial differential equations (2202.04537v3)

Published 9 Feb 2022 in math.NA, cs.NA, math-ph, and math.MP

Abstract: We investigate time complexities of finite difference methods for solving the high-dimensional linear heat equation, the high-dimensional linear hyperbolic equation and the multiscale hyperbolic heat system with quantum algorithms (hence referred to as the "quantum difference methods"). For the heat and linear hyperbolic equations we study the impact of explicit and implicit time discretizations on quantum advantages over the classical difference method. For the multiscale problem, we find the time complexity of both the classical treatment and quantum treatment for the explicit scheme scales as $\mathcal{O}(1/\varepsilon)$, where $\varepsilon$ is the scaling parameter, while the scaling for the multiscale Asymptotic-Preserving (AP) schemes does not depend on $\varepsilon$. This indicates that it is still of great importance to develop AP schemes for multiscale problems in quantum computing.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.