Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Proving Information Inequalities and Identities with Symbolic Computation (2202.02786v1)

Published 6 Feb 2022 in cs.IT and math.IT

Abstract: Proving linear inequalities and identities of Shannon's information measures, possibly with linear constraints on the information measures, is an important problem in information theory. For this purpose, ITIP and other variant algorithms have been developed and implemented, which are all based on solving a linear program (LP). In particular, an identity $f = 0$ is verified by solving two LPs, one for $f \ge 0$ and one for $f \le 0$. In this paper, we develop a set of algorithms that can be implemented by symbolic computation. Based on these algorithms, procedures for verifying linear information inequalities and identities are devised. Compared with LP-based algorithms, our procedures can produce analytical proofs that are both human-verifiable and free of numerical errors. Our procedures are also more efficient computationally. For constrained inequalities, by taking advantage of the algebraic structure of the problem, the size of the LP that needs to be solved can be significantly reduced. For identities, instead of solving two LPs, the identity can be verified directly with very little computation.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.