Static solutions to the spherically symmetric Einstein-Vlasov system: a particle-number-Casimir approach (2202.01835v1)
Abstract: Existence of spherically symmetric solutions to the Einstein-Vlasov system is well-known. However, it is an open problem whether or not static solutions arise as minimizers of a variational problem. Apart from being of interest in its own right, it is the connection to non-linear stability that gives this topic its importance. This problem was considered in \cite{Wol}, but as has been pointed out in \cite{AK}, the paper \cite{Wol} contained serious flaws. In this work we construct static solutions by solving the Euler-Lagrange equation for the energy density $\rho$ as a fixed point problem. The Euler-Lagrange equation originates from the particle number-Casimir functional introduced in \cite{Wol}. We then define a density function $f$ on phase space which induces the energy density $\rho$ and we show that it constitutes a static solution of the Einstein-Vlasov system. Hence we settle rigorously parts of what the author of \cite{Wol} attempted to prove.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.