Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Stochastic Graph Neural Networks with Constrained Variance (2201.12611v2)

Published 29 Jan 2022 in eess.SP and cs.LG

Abstract: Stochastic graph neural networks (SGNNs) are information processing architectures that learn representations from data over random graphs. SGNNs are trained with respect to the expected performance, which comes with no guarantee about deviations of particular output realizations around the optimal expectation. To overcome this issue, we propose a variance-constrained optimization problem for SGNNs, balancing the expected performance and the stochastic deviation. An alternating primal-dual learning procedure is undertaken that solves the problem by updating the SGNN parameters with gradient descent and the dual variable with gradient ascent. To characterize the explicit effect of the variance-constrained learning, we conduct a theoretical analysis on the variance of the SGNN output and identify a trade-off between the stochastic robustness and the discrimination power. We further analyze the duality gap of the variance-constrained optimization problem and the converging behavior of the primal-dual learning procedure. The former indicates the optimality loss induced by the dual transformation and the latter characterizes the limiting error of the iterative algorithm, both of which guarantee the performance of the variance-constrained learning. Through numerical simulations, we corroborate our theoretical findings and observe a strong expected performance with a controllable standard deviation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.