Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Isoperimetric inequalities for the magnetic Neumann and Steklov problems with Aharonov-Bohm magnetic potential (2201.11100v2)

Published 26 Jan 2022 in math.SP and math.AP

Abstract: We discuss isoperimetric inequalities for the magnetic Laplacian on bounded domains of $\mathbb R2$ endowed with an Aharonov-Bohm potential. When the flux of the potential around the pole is not an integer, the lowest eigenvalue for the Neumann and the Steklov problems is positive. We establish isoperimetric inequalitites for the lowest eigenvalue in the spirit of the classical inequalities of Szeg\"o-Weinberger, Brock and Weinstock, the model domain being a disk with the pole at its center. We consider more generally domains in the plane endowed with a rotationally invariant metric, which include the spherical and the hyperbolic case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.