Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Complexity Channel estimation with Neural Network Solutions (2201.09934v1)

Published 24 Jan 2022 in eess.SP and cs.AI

Abstract: Research on machine learning for channel estimation, especially neural network solutions for wireless communications, is attracting significant current interest. This is because conventional methods cannot meet the present demands of the high speed communication. In the paper, we deploy a general residual convolutional neural network to achieve channel estimation for the orthogonal frequency-division multiplexing (OFDM) signals in a downlink scenario. Our method also deploys a simple interpolation layer to replace the transposed convolutional layer used in other networks to reduce the computation cost. The proposed method is more easily adapted to different pilot patterns and packet sizes. Compared with other deep learning methods for channel estimation, our results for 3GPP channel models suggest improved mean squared error performance for our approach.

Citations (17)

Summary

We haven't generated a summary for this paper yet.