Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pilot Pattern Design for Deep Learning-Based Channel Estimation in OFDM Systems (2003.08980v1)

Published 19 Mar 2020 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we present a downlink pilot design scheme for Deep Learning (DL) based channel estimation (ChannelNet) in orthogonal frequency-division multiplexing (OFDM) systems. Specifically, in the proposed scheme, a feature selection method named Concrete Autoencoder (ConcreteAE) is used to find the most informative locations for pilot transmission. This autoencoder consists of a concrete layer as the encoder and a multilayer perceptron (MLP) as the decoder. During the training, the concrete layer selects the most informative pilot locations, and the decoder reconstructs an approximate estimation of the channel. Eventually, the ChannelNet is trained on the output of the ConcreteAE aiming to reconstruct the ideal channel response. The estimation error results show that this approach outperforms the previously presented ChannelNet with a uniformly distributed pilot pattern, and its performance is comparable to the minimum mean square error (MMSE).

Citations (40)

Summary

We haven't generated a summary for this paper yet.